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Abstract— The Visibility-based Persistent Monitoring (VPM)
problem seeks to find a set of trajectories (or controllers) for
robots to persistently monitor a changing environment. Each
robot has a sensor, such as a camera, with a limited field-of-
view that is obstructed by obstacles in the environment. The
robots may need to coordinate with each other to ensure no
point in the environment is left unmonitored for long periods
of time. We model the problem such that there is a penalty that
accrues every time step if a point is left unmonitored. However,
the dynamics of the penalty are unknown to us. We present
a Multi-Agent Reinforcement Learning (MARL) algorithm
for the VPM problem. Specifically, we present a Multi-Agent
Graph Attention Proximal Policy Optimization (MA-G-PPO)
algorithm that takes as input the local observations of all agents
combined with a low resolution global map to learn a policy
for each agent. The graph attention allows agents to share their
information with others leading to an effective joint policy. Our
main focus is to understand how effective MARL is for the
VPM problem. We investigate five research questions with this
broader goal. We find that MA-G-PPO is able to learn a better
policy than the non-RL baseline in most cases, the effectiveness
depends on agents sharing information with each other, and
the policy learnt shows emergent behavior for the agents.

I. INTRODUCTION

Multi-robot systems are often tasked with monitoring a
large environment [1]–[6]. This includes applications such
as patrolling where regularly revisiting the environment is
crucial. When the robots have limited field-of-view, they may
be able to see only a part of the environment at any given
time. Therefore, the robots need to coordinate their actions
so that they can monitor the environment effectively. In this
paper, we investigate whether a team of agents can learn to
cooperate for effective Visibility-based Persistent Monitoring
(VPM).

We consider a scenario where a team of agents are tasked
with persistently monitoring a 2D environment with known
stationary obstacles. The agents have a limited field-of-view
sensor whose visibility is obstructed by the obstacles. Any
point that is not monitored accrues penalty at a rate unknown
to the agents. The goal is to find trajectories for all agents
so as to minimize the collective penalty.

The VPM problem is a variant of the well-studied
visibility-based coverage problem. In such problems, the goal
is to find a placement of robots such that they collectively
see all points in the environment or maximize the area that
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they cover while taking into account the geometric visibility
constraints. In addition to coverage, the VPM problem also
requires agents to revisit the previously visited positions in
order to consistently cover the whole environment. As such,
the problem we study is a generalization of the coverage
problem. This makes it a more challenging problem to solve,
especially if the dynamics of how the penalty accrued is
unknown. Likewise, VPM is a generalization of the standard
Persistent Monitoring (PM) problem [2], [7], [8] where in
order to monitor a location, the robot needs to visit that
location. The standard PM problem does not take visibility
constraints into account.

We present a deep neural network architecture termed
MA-G-PPO (Multi-Agent Graph Attention Proximal Policy
Optimization) for solving this problem. The network takes
as input the observations for each agent and extracts a
lower dimensional feature representation using Convolutional
Neural Network (CNN) [9], shares the features with other
agents through Graph Attention (GAT) layer [10], and uses
Proximal Policy Optimization (PPO) [11] for learning the
policy. While this architecture is similar to the ones that have
been recently proposed for multi-agent coordination [12],
this is the first work to present a Multi-agent Reinforcement
Learning (MARL) approach for the VPM problem. Never-
theless, our main contribution is an empirical investigation
of the efficacy of MARL for VPM.

Specifically, we investigate the following five research
questions in the context of the VPM problem: (1) Does
MARL perform better than non-RL baselines for the VPM
problem? (2) How does the information available to the
agents affect the performance? (3) Are there emergent be-
haviors due to MARL? (4) How much does introducing
communication improve the performance in MARL? (5)
How well does MARL generalize to the number of agents?

We present our findings for each of these questions along
with some conjectures that can inform future work. We hope
that these findings can inform other applications of multi-
agent RL to multi-robot cooperative tasks.

II. RELATED WORK

The stationary visibility-based coverage problem for a
team of mobile agents is called Watchman Route Problem
(WRP) [13], which is the mobile version of the Art Gallery
Problem (AGP) [14]. The goal in the WRP is to design paths
for agents to minimize the time required to visually cover
the entire environment. There are variants of these problems
that take into account practical restrictions on mobile robots



(e.g., time to stop and take measurements [15]). In general,
visibility-based coverage problems are NP-hard.

Several deterministic methods have been proposed for
solving multi-agent persistent monitoring. [16] proposes a
method of observing stochastic events at geographical nodes
with a group of mobile agents by using a receding horizon se-
quential greedy algorithm to determine a sub-optimal policy
with a polynomial cost and guaranteed bound on optimality.
This is facilitated by showing that the reward function is a
monotone sub-modular set function. There is also existing
work on 2D PM [7] that focuses on monitoring a set of
target points in the environment. They proposed a planner
for robots to reduce the uncertainty on all target points.
While there is significant work on the PM problem, there
are major differences compared to the VPM problem we
study here: The environment in PM problems is typically
represented as a graph with vertices or a set of points on
the plane that need to be visited whereas here we have
a continuous 2D environment that needs to be persistently
monitored. Furthermore, in the 2D PM problems, there is
no consideration of agents’ visibility unlike VPM, where
visiting a point may not be necessary.

For multi-agent systems, communication between agents
can be modeled as a Graph Convolution Neural Network
(GCN) [17], in this work the agents are sharing their local
observation through a graph neural network and using the
attention mechanism to assign weights for aggregating the
received information, finally based on this aggregated in-
formation RL is used for decision making. The GAT [10]
is an improvement over GCN, dealing with the dynamic
communication graph in multi-agent systems. The work most
closely related to ours is [18], [19]. Both papers focus
on multi-robot coordination with supervised learning and
reinforcement learning, respectively. However, these papers
focus on simpler tasks such as navigation and static coverage.
Here, we explicitly focus on VPM. Furthermore, we seek to
understand the efficacy of MARL for VPM, something that
has not been studied yet.

III. PERSISTENT MONITORING

In this section, we formally describe the persistent moni-
toring problem. We represent the environment as a 2D grid
world K. Each cell in the environment is to be monitored by
the agents. We associate a reward value, i.e., negative-valued
penalty, with each cell. Let R(k)(t) be the reward associated
with cell k ∈ K at time t. This reward is a function of the
last time any agent monitored the cell k. Let D be a non-
negative decay rate for the reward. If the cell k is within
the field of view of any agent at time t, then the reward
will be reset to 0; otherwise, the reward for cell k decays
with rate D. We define the reward associated with cell k
as follows: R(k)(t + 1) = 0, if k is monitored at t, and
R(k)(t+ 1) = max{R(k)(t)−D,−Rmax} otherwise.

All cells are initialized with a reward, R(k)(0) = 0.
Since D ≥ 0, R(k)(t) will be non-positive. An equivalent
interpretation of R(k)(t) is to think of it as the negative
of the penalty associated with not viewing the cell k. The

longer the time spent between successive viewings, the larger
the accrued penalty. Rmax is used to limit the penalty so
that it does not grow unbounded. The objective of the
persistent monitoring problem is to find an optimal policy π
to maximize the cumulative reward collected by all agents in
a finite horizon of length T : maximize

π

∑T
t=0

∑
k∈K R

(k)
π (t).

We show the dependence on π to represent the fact that the
reward collected at any time t is a function of the policy for
the agents until time t. The standard coverage problem [20]
is a special case where the D is set to 0 once a cell is viewed
by some agent for the first time.

The policy maps the states to actions for each agent. Each
agent can choose from one of four neighbors and staying in
place. In general, we do not assume that D is known to the
algorithm; thereby making this an RL problem.

Since the reward is a function of the history of the position
of the agents, the state must contain not only the positions of
the agents but also the reward values for each cell in the grid
at the current time step. This ensures the Markov property.
However, the state space is large and therefore, we resort to
using RL to solve the problem. We investigate the effect of
other types of state representation as discussed next, instead
of the full grid map.

An instance of the simulated environment is shown in
Figure 1. The figure shows the following elements: (1)
Agents: represented in yellow dots. (Note: in the penalty
scale, the yellow region is not to represent the agents.) (2)
Static Obstacles in red (diagonal fill). (3) Free cells: Agents
can only traverse through these free cells. The color of the
free cells represent R(k)(t) ranging from blue (0) to red
(−Rmax).

Fig. 1. From left: Mini-map, Simulation environment and Local map

We assume that each agent has a limited visibility coverage
range with a square field-of-view of side length L centered
at the agent. This is shown in the Figure 1 within the
black dashed box. We consider both scenarios where agents
have access to the global information of all cells or have
only the local information of the area visible at the current
time step. We investigate the effect of learning with: (1)
Mini-map: As shown in Figure 1, The mini-map is a lower
resolution form of the simulation environment. The mini-
map contains the position of the current agent only with
penalty values and position of the obstacles. (2) Local map:
As shown in Figure 1, provides a higher resolution map of the
environment around the agent at the current time step (in the
ego-centric frame of the agent). The local map is essentially



the observation given by the sensor onboard the agent. We
investigate the effect of learning with only mini-map, with
only local map, and with both local and mini-map.

IV. PROPOSED APPROACH: MA-G-PPO

In this section, we describe the approach we use to solve
the VPM problem discussed in the previous section. Our
architecture uses the communication-based MARL struc-
ture [12] along with GAT [10] to model communication. We
term this architecture as Multi-agent PPO with GAT (MA-
G-PPO).

Fig. 2. MA-G-PPO architecture.

Figure 2 shows the schematic of MA-G-PPO. The struc-
ture in the yellow dashed box is replicated for all agents.
Each agent gets a copy of the same structure (with identical
weights). This allows us to generalize the setup by replicating
this structure for additional agents. The structure consists of
the following modules that we describe in detail: CNN for
extracting features from the inputs for each agent; GAT to
share information across agents; and PPO for finding the
optimal policy for each agent.

A. Local Feature Extraction

The input to the network is the observation zi for all agents
i at time t. We use a CNN to extract a feature vector hi from
zi. This feature vector is then passed to the GAT and shared
with other agents. We investigate three types of observations
zi: (i) only the local map; (ii) only the global mini-map;
and (iii) the combined local and mini-map (as shown in
Figure 1). We represent the local map and the mini-map
as an image where the cells corresponding to the obstacle,
agent and free cells are 150, 200 and penalty ranging from
0 to −Rmax respectively. In case (iii), the input zi is a two
channel image consisting of the local map and mini-map
images. As shown in Section V, case (iii) performs the best
which is not surprising since it contains more information.
This embedding layer runs locally on each agent.

B. Graph Attention Network

After the local feature extraction, we use GAT in order
to share the local feature vectors with neighboring agents.
This is represented as a weighted edge between the agents
(nodes) i and j. Each agent aggregates all the incoming
feature vectors into, h′i, as shown in the Figure 2.

The learnable attention value αi,j gives how much weigh-
tage agent i gives to the feature vector from j. The attention
weight value on the edge between i and j is calculated using:

αmi,j =
exp(LEAKYRELU(a(Wmhi,Wmhj)))∑

k∈Ni
exp(LEAKYRELU(a(Wmhi,Wmhk)))

(1)

Here, hi ∈ RF is the feature vector of node i; Ni is the set
of neighboring nodes of node i; W ∈ RF

′
×F is a learnable

linear transformation matrix; a : RF
′

× RF
′

→ R is a
single layer feedforward neural network which produces a
real value; LEAKYRELU is the activation function applied
to the output of a. We are using multi-head attention for
m heads as it can capture more types of relationships and
makes training stable [17].

After a node i aggregates feature vectors from its neigh-
bors Ni, the aggregated vector h

′

i will be:

h
′

i =
1

M

M∑
m=1

∑
j∈Ni

αmi,jW
mhj

 (2)

This way of updating h
′

i is permutation-invariant to the order
of nodes in its neighborhood Ni. This is because the attention
weight αi,j between agent i and its neighbor j is a function
of the features hi and hj .

In our simulations, we consider a fully connected network.
That is Ni is the set of all other agents except i. However,
any other neighborhood relation can directly be incorporated
in the architecture. For example, Ni can be based on the
communication range of the agents.

C. Multi-agent PPO

With the aggregated feature vector h′i from GAT along
with its own feature vector hi are fed as the input to the next
layers for each agent. Here, we choose PPO, a state-of-the-
art actor-critic method for learning the optimal policy. Policy
gradient actor-critic methods, in particular PPO, generally
outperforms DQN in the context of path planning tasks [21].

The PPO portion of the network consists of an actor and a
critic head. The parameters of the actor are denoted by θ1 and
those of the critic are denoted by θ2. Since the VPM problem
is a cooperative task, the reward for all the agent is the same.
The shared reward at time t is the summation of reward
values for all unoccupied cells: r(t, θ1) =

∑
k∈K R

(k)
π(θ1)

(t).
Let G(t, θ1) =

∑T
t=0 γ

tr(t, θ1) be the discounted sum
of rewards collected from the start (t = 0) to the end
(t = T ) of an episode where γ is the discount factor. Let
V i(sit, θ2) be the estimate of the expected return for the
state sit for agent i, V i(sit, θ2) = E[G(t)|sit]. This estimate
is provided by the critic network. The advantage value for
agent i at time t is: Ait(θ1, θ2) = G(t, θ1) − V i(sit, θ2).
The surrogate loss in PPO for agent i is: surri(θ1, θ2) =
Et[minθ1,θ2

{
ratiotA

i
t, clip(ratiot, 1− ε, 1 + ε)Ait

}
]. Here,

the clip and ratio are as defined in [11]. We minimize the
following loss function:

L(θ1, θ2) =
1

S

∑
S

1

N

N∑
i=1

(surri) (3)



where N is number of agents, S is the size of the mini-batch.

V. EXPERIMENTAL EVALUATION

We conducted a set of experiments to evaluate the pro-
posed approach for solving the VPM problem. Our goal for
the experiments was to answer the five questions posed in
the introduction with the overarching goal of assessing the
efficacy of MARL methods for solving the VPM problem.
In the following, we first describe our experimental setup
followed by a discussion of the investigation we carried out
for the five research questions.

Experimental Setup: We carried out simulations in
a custom-built environment in Python.1 The training and
testing are performed on a computer with Ubuntu 16.04 LTS
Operation system, an Intel(R) Xeon(R) Silver CPU, and a
GeForce RTX 2080 Ti GPU.

The MA-G-PPO network was implemented in Pytorch. We
use the Deep Graph Library (DGL) [22] for graph neural
network operations.

The training is conducted with T = 1000 steps per episode
and testing with T = 2000 steps per episode on 50 × 50
maps and field-of-view L = 25. In the following sections,
we will use notation Ntrain as the number of agents used
during the training and Ntest as number of agents during
the deployment/testing. For updating penalty value on cells,
decay rate D = 1 and the maximum penalty value on a cell
Rmax = 400. The local map and the mini-map are 25× 25.
The size of the feature vectors are F = F

′
= 128. We

use three attention heads, i.e., m = 3. All Ntest values are
averaged over 10 test runs for the learned policy.

Actual Training Time: Here is a sample training time
to show the practical time constraint on the total number of
training episodes we can run. For 4 agents, the typical MA-
G-PPO training time for 10k episodes is almost 16 hours.

Recall that the reward values as defined in Section III
are non-positive. For ease of understanding we view it as a
minimization problem and look at the absolute value of the
rewards i.e. minimizing total penalty.

We now discuss the results of our investigation of the five
research questions.

A. Does MARL perform better than non-RL baselines for the
VPM problem?

We compare our MA-G-PPO with three non-RL base-
lines: Greedy Centralized Search (GCS), Travelling Sales-
man Problem-Cyclic (TSPC) and Random policy.

The GCS selects a destination cell for every unassigned
agent at every time instance as follows. We first find the
subset of cells, say S, that have non-zero penalties. Then,
we sort the cells in the descending order of penalties. Next,
we iteratively choose the cell in S with the highest penalty
and add it to a candidate list, say C. Once a cell c is added
to C, we iterate through S and remove from it any cell that
is within a predefined L2 distance from c. We repeat this
until S is empty. Then, we greedily assign every unassigned

1The code of MA-G-PPO is available at https://github.com/
raaslab/rl_multi_agent.

agent, in a predefined order, to the nearest cell in C such
that no cell is assigned to more than one agent. Then, the
agent follows the shortest path using Dijkstra to the assigned
cell. An agent is reassigned when it reaches its assigned cell
or if the assigned cell is no longer present in the set S.

In a context where the location of nodes are determined
and the routes between then are undetermined, [23] proposed
an optimal cyclic patrolling scheme for persistent monitoring.
Similar approaches have been devised for other variants of
PM [23]–[27] . We cannot directly use these strategies as a
baseline since they do not take the visibility into account.
Instead, we take inspiration from these methods and devise
a baseline that does find a cyclic tour for all robots to follow.
To find this tour, we first find points that collectively sees
all points in the environment. Finding the shortest tour in an
environment with obstacles is NP-complete [28]. However,
we can find an approximation of the shortest tour. In our case,
we first find a set of points such that visiting these points is
sufficient to ensure all points in the environment are seen at
least once (we do this manually for the test environments).
Then, we find a TSP tour that visits all the points using
Machine Learning Randomized Optimization and SEarch
(mlrose) solver [29] The agents are then evenly placed along
this tour and they execute the entire tour simultaneously.

The random policy samples an action for each agent from
a uniform distribution at every time instance.

Fig. 3. Comparison of cumulative penalty (unit: 106) between four
algorithms on two maps. Note that TSPC finds an approximation of the
shortest tour with optimal preset points, or the near-optimal policy.

Figure 3 shows the results of comparison between the four
algorithms for a variety of Ntrain and Ntest values. Not
surprisingly, MA-G-PPO, GCS and TSPC always outperform
the random policy. On open map, for MA-G-PPO, GCS and
TSPC, as number of agents decrease from 10 to 2, the gap
between their performance increases. When there are fewer
agents, MA-G-PPO performs much better than GCS. But
with 10 agents MA-G-PPO and GCS perform identically.
This is not surprising. As number of agents increases, the
solution of problem becomes closer to static coverage. TSPC
follows a cyclic policy irrespective of number of agents,
hence its performance degrades compared to MA-G-PPO
and GCS as the solution moves towards a static coverage
solution.

This can be seen in Figure 4. We show the policy learned
by MA-G-PPO with 4 and 10 agents on the open map. The
shaded trail shows the trajectories followed by the agents. As
we can see, with 4 agents, the learned policy has the agents



cover larger distances effectively carrying out a tour of the
environment. But with 10 agents, we see that the agents all
remain in almost the same positions. When there are fewer
agents, there is a need for careful planning. This is where
MA-G-PPO outperforms GCS by a larger margin. Regardless
of the number of agents, we see that MA-G-PPO is able to
learn a good solution that outperforms GCS.

(a) 4 agents (b) 10 agents

Fig. 4. Learned policy figures for 4 and 10 agents in the open map.

(a) 4 agents (b) 10 agents

Fig. 5. Learned policy for 4 and 10 agents in the 8-Room map.

We also carried out the same experiment in a more
structured and larger environment (Figure 5) with 8 rooms.
Here, we find that GCS performs better than the policy
learned by MA-G-PPO after 30k episodes. We suspect that
30k episodes are not sufficient for learning a better policy
in this more structured environment. Part of the reason is
that the optimal policy here requires precise movement (each
agent must monitor two of the rooms, move along a vertical
line, and move in a way so as to be out of phase with respect
to each other). After 30k episodes, the agent learns a policy
that has the first two properties but not the third. However, as
we see from the trend shown in Figure 6 the policy has not
converged after 30k episodes for the map with 8 rooms. In
fact, in the open map case, the policy is learnt quickly and we
see marginal improvement over the 30k episodes. But with
the larger map, the policy consistently improves. We suspect
that by training longer, we would end up with a policy that
does outperform GCS as we see in smaller environments.
In the case of a static solution, MA-G-PPO performs better
than TSPC.

From the results, we conclude that MA-G-PPO effectively
plans the path for the agents for VPM ranging from scenarios
requiring only a nearly-static deployment to those requiring
carefully chosen trajectories. We study the structure of these
trajectories further in Section V-C.

Fig. 6. Rolling average of 500 episodes of the training performance for
Ntrain = 4.

B. How does the information available to the agents affect
the performance?

We are interested in understanding the effect of the
available information on the performance of the agent. We
consider three options for the input zi for each agent: the
local map and mini-map independently and together.

We trained the policy in each of the three cases for a
total of 30k episodes. We plot the total penalty accumulated
across each episode for each of the inputs used, in Figure
7. We see that training with only mini-map learns faster
and is more stable than using only local map. This is not
surprising since the mini-map has full access to the global
information but just at a lower resolution. However, there
is a diminishing return to training with just the mini-map.
Global information at a lower resolution is not enough to plan
trajectories through complex structures that do not show up
on the mini-map.

We see that the local and mini-map together far outper-
forms learning with just one of the prior maps, right from the
outset. It must be noted however, that despite having only
local map, the network is still able to perform well (even
outperforming global mini-map information) given sufficient
training time. Due to the high computation cost and the risk
of over-fitting, a more faster and stable option is chosen.
Hence, in the rest of the simulations, we use the networks
trained on both local and mini-map.

Fig. 7. Training performance with three input options to MA-G-PPO using
rolling average over 500 episodes and the ±0.5std error band.

C. Are there emergent behaviors due to MARL?

The persistent monitoring problem has a strong underlying
geometric structure. We investigated whether MA-G-PPO
can find structure in the policy learned and lead to emergent
behaviors. In particular, we are interested in understanding
and interpreting the behaviors learned by the agent, if any.
We investigated this through two types of environments. The
first environment is structured with four rooms as shown
in Figure 8(a). There are two agents. MA-G-PPO learns a
natural policy: each agent is “assigned” to monitor two of
the rooms. Figure 8(a) shows the trail of the agents paths.



The agents oscillate between the two rooms. Interestingly,
there is a phase difference between the two oscillations. We
see this in the y–coordinates plotted in Figure 8(b) for both
agents over time. We also observe that the learned policy is
periodic and with a fixed phase difference between the two
agents. We believe by learning a phase difference, the agents
take turns monitoring the middle corridor ensuring that the
penalty values there do not reach a higher value.

(a) (b)

Fig. 8. (a) Trajectory of learned policy for two agents in this 4-Room
Map. (b) Phase difference between the agents in y-coordinates.

We observe a similar emergent behavior in the second type
of environment which is an open one (Figure 4(a)). Here, we
train with four agents. MA-G-PPO again learns a policy with
an intuitive structure: one agent at the center remains nearly
stationary throughout the episode and the other three agents
move along a tour around the periphery of the environment.
To observe the structure, we plot sin(θi) for each of the
three outer agents in Figure 9(a). Here θi are their angular
coordinates with respect to the center of the environment.
We can observe that the three agents follow a nearly periodic
policy with a fixed phase difference as before.

(a) (b)

Fig. 9. In open map. (a) polar-coordinate plot for Ntest = 4 (c.f. Figure
4(a)). (b) polar-coordinate plot for Ntest = 6.

In [30], Alamdari et al. introduced the notion of kernels
for infinite horizon persistent monitoring paths. A kernel is
a finite length path which when repeated forms the infinite
horizon solution to the original problem. We conjecture
that MA-G-PPO is able to learn the kernel in structure
environments. The two sets of results shown here provide
evidence of such a learned kernel (i.e., periodic paths).

D. How much does introducing communication improve the
performance in MARL?

To investigate this question, we compared two versions:
one with communication (MA-G-PPO) and one without it
(MA-PPO). The latter is the same as the former but without

GAT. We train both models with 2, 4, 6, and 10 agents on
the same map. Both models are trained separately and then
deployed with various number of agents.

We show the comparison between the learned policies in
Figure 10. First consider the diagonal entries in the table
that correspond to the case where Ntrain = Ntest. We
observe that in all cases, the architecture with communication
outperforms the one without it. As the mini-map of an agent
does not contain location information of other agents, it
cannot predict or coordinate with each other. GAT allows
agents to communicate their global position and observation
with each other, in the form of aggregated information. We
conjecture that the aggregated information facilitates agents’
coordination on a global scale.

E. How well does MARL generalize to the number of agents?

In the results discussed so far, we assume that the number
of agents during training are the same as the number of
agents in deployment, i.e., Ntrain = Ntest. In practice,
that may not be the case. For example, some robots may
malfunction during deployment and retraining a policy from
scratch for the new number of robots may be infeasible.
Therefore, we also investigated how well does MA-G-PPO
generalize when Ntrain 6= Ntest. We also compare this to
the generalization abilites of MA-PPO.

This corresponds to the off-diagonal entries in Figure 10.
Consider each column in the table (corresponding to the
same number of agents Ntest deployed with varying number
of agents during training). Not surprisingly, the penalty is
lowest when Ntrain = Ntest. But we also observe that
MA-G-PPO generalizes better than MA-PPO. For example,
consider the second column corresponding to Ntest = 4.
When Ntrain = Ntest, both MA-G-PPO and MA-PPO
perform close to each other (44.0 vs 46.1). However, as
the gap between Ntrain and Ntest increases, so does the
gap between MA-G-PPO and MA-PPO. In the extreme case
when Ntest = 4 and Ntrain = 10, MA-G-PPO still yields
a penalty of 98.5 compared to the much higher penalty of
313.7 with MA-PPO. A similar trend is seen in other cases.

One possible way of explaining this is that the communica-
tion help agents learn the structure of the solution (periodicity
and phase difference) as described earlier. For MA-G-PPO,
as we can see in Figure 9(a), the emergent behavior learned
when Ntest = 4 translates to the case shown in Figure 9(b)
when Ntest = 6. In both cases, Ntrain = 4. We observe
the same structure in the policy: one agent in the center,
the remaining ones performing a tour around the periphery
with the same period and fixed phase difference. Figure 9(b)
shows that even if we train on four agents and deploy on six
agents, the structure in the policy (one agent at the center, five
along the periphery) remains similar to the Ntest = 4 case.
The phase difference becomes smaller with more agents.

In contrast, when we use MA-PPO to train the model, the
policy we get is as Figure 11. The learned trajectory is that
one agent stays in the upper-left corner and the remaining
Ntest−1 agents move along a tour at the lower-right corner.
The polar-coordinate plot is shown in Figure 12.



Fig. 10. Average cumulative penalty (units: 106) per episode.

(a) (b)

Fig. 11. Training MA-PPO with Ntrain = 4. (a) Trajectory for Ntest =
4. (b) Trajectory for Ntest = 6

For MA-PPO, the structure (especially the phase differ-
ence part) in the solution of (Ntrain = 4,Ntest = 4) does
not generalize to (Ntrain = 4,Ntest = 6) case. This suggests
a lack of emergent behavior in the case of MA-PPO as
compared to MA-G-PPO which precludes generalization.

We conjecture that the communication is likely the reason
for learning the structure in the solution which leads to MA-
G-PPO outperforming MA-PPO.

VI. CONCLUSION

Our emphasis in this paper was to investigate a series of
questions regarding the efficacy of using MARL for VPM.
The experiment results show that given sufficient training
time, the proposed approach may be better than TSPC base-
line if there exists a nearly-static solution and GCS baseline
otherwise. We also show that agents that use a combination
of local and global information far outperform agents trained
with only one type of information. Furthermore, the agent
trained with higher-resolution local information eventually
performs better than those with lower-resolution global infor-
mation. We also see that communication in MA-G-PPO leads
to better performance than no communication. One interest-
ing feature we discover is that MA-G-PPO learns emergent
behavior for agents. Specifically, we observe that the agents
learn a periodic policy with a fixed phase difference in the
agents’ paths. As mentioned earlier, we conjecture that MA-

(a) (b)

Fig. 12. In Open map. (a) Polar-coordinate plot for Ntest = 4. (b) Polar-
coordinate plot for deployment Ntest = 6.

G-PPO is able to learn the kernels [30] of infinite horizon
paths in some structured environments. Furthermore, this
structure is preserved even when the number of agents that
are deployed is not the same as the number of agents during
training. This leads to better generalization. The results
presented here provide evidence of this in Visibility based
Persistent Monitoring settings.
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